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1. Introduction

“101 Dalmartians” is a 3D action-shooter developed as the practical part of the lecture “Game 
Development” at the National University of Singapore (NUS) [link: 1]. The lecture took place 
from August to November 2005 and was conducted by Dr. Golam Ashraf. It covered the whole 
process of developing modern video games, from the basics of character and level design to the 
implementation. The emphasis was put on efficient and scalable algorithms for game physics 
and artificial intelligence.

The students were divided into groups of three and had to develop a game according to given 
specifications. The game concept, graphics, animations, implementation and documentation had 
to be created within the period from the 10th of August 2005 to the 9th of November 2005. My 
group, made up of Gilles Pierre Vincent Jaffier, Cedrik Pascal Sylvain Manzoni (both were 
exchange students from France) and myself, decided to take the Disney movie “101 
Dalmatians” [Link: 2] as the base for our game.

This work explains common algorithms and methods used to create a modern 3D-game from 
scratch. “101 Dalmartians” will serve as an example and general experiences made while 
creating the game are described, but the emphasis is put on general algorithms that are used in a 
wide range of games. As most of the algorithms described in this work can be assigned to the 
domain of the game engine, game designers who are using a 3rd-party game engine will not 
have to implement these algorithms themselves. But an understanding of what the game engine 
does might come in handy.
This document will roughly follow the process of the creation of the game. First of all, the 
requirements to the game set by the lecturer will be explained, followed by the general concept 
and scenario of “101 Dalmartians”. After this, a short chapter will explain how the animations 
and graphics were created.
Game physics makes up the biggest part of this work. A chapter about space partitioning 
explains how to divide the world into logical areas, which is one of the most important parts to 
organize the game world in an efficient manner. The following five chapters explain how 
accurate, yet efficient collision detection can be achieved. This is not only necessary to let the 
characters move around in a realistic way, but also the foundation to create the perception of 
agents in the game. A chapter about heightmaps explains how to create the ground of the game 
level in a very easy way, and a chapter about camera control describes some collision-related 
special cases that have to be taken care of when creating a 3rd-person game.
After that, the importance of waymarkers and methods for path finding used by agents will be 
explained. Path finding could be seen as part of the artificial intelligence. However, most of the 
work in this project went into “outsourcing” computation from the agents into precomputed 
routes and heuristics that the agents can use, thus it will be treated in a separate chapter.
The following chapter describes and discusses techniques used for artificial intelligence, from a 
game designer's point of view. The emphasis lies on making agents appear to be intelligent, not 
on actually making them intelligent. Algorithms for modeling the agent's perception make up a 
big part of this, followed by the decision making process and steering, which refers to 
navigation on a microscopic level. A chapter discusses the need of a memory for agents. The 
final chapter within the Artificial Intelligence unit explains the concept of on- and off-screen 
behavior, to sacrifice a certain amount of realism in favor of speeding up the computation.
After that, the implementation of the actual game “101 Dalmartians” will be covered – 
including a description of the used rendering toolkit “Ogre 3D” [link 3] and a overview of the 
major classes used.
A discussion about the state of the project and the experiences made while creating the game 
will conclude this work.
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2. Terminology

Some of the terms used in this work are ambiguous and used for several different concepts. To 
avoid misunderstandings, the most important terms will be clarified at this point:

• “Player” will always refer to the actual human that plays the game

• “Character” refers to the main character of the game being controlled by the player. 
This distinction between “player” and “character” is taken from “Rules of Play” [9].

• “Agent” refers to all autonomously moving objects in the game that are not controlled 
by the player. As many parts of this work are about the concrete game “101 
Dalmartians”, whose agents are all animals, the more common term “creatures” will be 
used from time to time.

• “Global world knowledge” refers to the concept that agents may receive knowledge 
about the world in other ways than their modeled perception. With global world 
knowledge, every agent always knows relevant information like where the main 
character and other agents are. Usually this decreases the realism of the game and 
therefore should be avoided.

• “Artificial Intelligence”, in this work, refers to higher-level topics like decision making 
as well as to low-level mechanisms of perception and path finding.

• “Level” refers to a coherent “world” in which the games takes place at a given point of 
time. “Coherent” in this context means that all associated data is loaded when entering 
the level, all agents are “alive” and objects are only added or removed according to the 
game logic. In that sense, entering a new level does not necessarily mean that a 
“mission accomplished” screen will pop up or the game is interrupted in another way, 
but that a new set of objects or agents is initialized, and usually a new part of the world 
is accessible.
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3. Game requirements

The following part is a short overview of the requirements the project had to comply with. The 
original 5-pages document can be found in the appendix.
The game had to be an 3D-game in an outdoor environment from the 3rd-person perspective. 
This means, the main character can be seen as part of the world, unlike in 1st-person-shooters 
(like Doom, Quake or Unreal), where the player perceives the world through the main 
character's eyes.
A growing civilization of creatures threatens to consume all food resources in the world and to 
kill the player. Three types of creatures exist within the civilization: the alpha female, the alpha 
male and the common creatures called “spawns”. Only the alpha female can give birth to new 
creatures, after mating with the alpha male. The goal of the game is therefore to kill the alpha 
female. The alpha male, on the other side, will protect the alpha female and provides her and her 
babies with food. Once the babies grow up, they leave the nest and will look for food for 
themselves and eventually face the player. Every creature has an own artificial intelligence, a 
perception and some internal variables like courage. They do not have global world knowledge. 
They are are individually weak against the player and thus prefer to attack in groups.

A part of the requirements on this game was that every group of students had to create all 
graphics and animations on their own (except for one group that had only two students and was 
allowed to use slightly modified characters of “101 Dalmartians”). The animation of the 
character and the agents had to use skeletal animation, created in the modeling software Maya.

The game had to be implemented using Visual C++. As the goal of the project was to study the 
core concepts involved in the creation of 3D-games, it was forbidden to use a game engine or 
libraries with a similar purpose, except for the rendering engine OGRE. Sound output in the 
game was optional, therefore using a sound engine and sounds and music from external sources 
was allowed.
The whole level had to be divided up into logical sectors for optimizing the efficiency of 
algorithms like collision detection, artificial intelligence, rendering and path finding. Collision 
detection had to be implemented between dynamic and static objects using hierarchical 
algorithms. The virtual camera had to avoid collisions with objects and had to move smoothly. 
The AI had to use hybrid rule-based and goal-based strategies and switch between different 
computation strategies for on-screen and off-screen agents.
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4. Design

4.1. The story and theme of the game

The description of the creature's civilization – one 
mother and one father giving birth to a huge number 
of children and protecting each other from an enemy 
– reminded us of the Walt Disney cartoon “One 
Hundred and One Dalmatians”. In this classic, 
which was first published in 1961, an evil (human) 
woman named “Cruella De Vil” kidnaps many 
dalmatian puppies. Their parents, the dalmatian 
dogs Pongo and Perdita head out to rescue them 
[11]. We took this as an inspiration for the game 
setting, inverting the perspective: the player controls 
Cruella De Vil and has to kill the creatures. The 
game plays on a foreign planet, the creatures are 
extraterrestrial life forms. The title of the game 
integrates this idea as the name "Dalmartian" is a 
pun on the most famous aliens of all time: the 
Martians.
The game world is designed to look “comical”, with 
very bright colors and a peaceful-looking 
environment. It is an island with nice beaches on the 
one side and big mountains on the other. Healthy, 
green trees are growing on this island and rocks of 
different shapes are lying around. The world is 
populated by many cute, innocent-looking creatures, 
which look like a crossing between a dalmatian dog 
and the New Zealand bird kiwi.
In contrast to this idyll, the main character is 
aggressive and sadistic and has a very powerful gun 
as a weapon, which is nearly as big as herself. To 
emphasis her aggressiveness, she also has other 
ways to fight: she can fight with a machete, a short-
range alternative to the gun. And out of the pure joy 
of being nasty, she can kick things and creatures 
around with her legs. Once in a while, she makes 
remarks like “so, will you move, or what?” to the 
player.

In the beginning, it was planned to include a 
background story to the game with cut-scenes 
triggered by certain events. The cut-scenes were 
supposed to be 2D-drawings in comic-style which tell a bit about the reason for her to kill the 
creatures. While the framework to display cut-scenes was implemented, the idea was discarded 
during the project as there was no time to create the drawings.
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4.2. Creating the graphics and animations

The 3D objects of the game are created with the modeling program Maya [link 4]. Various 
export-PlugIns do exist for Maya, one of them [link 5] converts Maya models into a format 
readable by Ogre.
The creation of a model begins with some conceptional drawings on paper. Most important are 
two drawings of each object to be modeled – one image where you can see the object from the 
front, and one from the side. In Maya, such drawings can be imported, aligned to the axis and 
thus serve as a template for the following modeling process.
Given this drawing, the actual modeling of an object is straight-forward, however time-
consuming. One of the basic geometric shapes provided by Maya is used as a base, and by 
splitting faces, extruding faces, deformations and other similar operations, the model 
approximates the shape of the drawing. In the case of humanoids and animals, usually only the 
left or right side of the creature is modeled manually, as the model can be mirrored after the 
completion of this one side.

The next step is to color the model. First of all, texture bitmaps have to be assigned to the faces 
of the model. Maya does this automatically to a certain extent. However in more complex 
models, pixels of the texture bitmap might end up being assigned to more than only one face. 
The effect would be that if one of the face is being colored, parts of the other face gets the same 
color. To prevent this, the assignment of the bitmap to the faces has to be adjusted manually.
Another design decision is the choice of the bitmap size. The bigger the size, the more detailed 
the texture can be, but the game will be slower and more memory will be used on the graphics 
card. Some approaches do exist to deal with the performance problem of bigger texture maps. 
For example, smaller versions of the bitmaps can be created, which can be used if the model is 
far away from the camera and therefore small on the screen. However, while this reduces the 
memory consumption on the graphics card, this comes with increased administrative efforts, 
even more memory usage in the main memory and if the whole system is not designed very 
carefully, strange graphic effects occur when the object gets closer to or more far away from the 
camera and the used bitmaps is switched.
The process of coloring can be done directly on the texture bitmap, or more conveniently in the 
3D view using a 3D painter tool. It is some work, but again straight-forward.

Animating the model is the tricky part. The technique used is skeletal animation. Starting at a 
fixed point relative to the object's position, a hierarchy of logical bones and joints is defined 
within the mesh. Every bone stores its length and the relative rotation against the parent bone or 
the absolute rotation against the coordinate system if there is no parent bone. Therefore, if a 
bone in the upper part of the hierarchy is rotated (like the upper leg), the lower parts move along 
automatically.
Every face of the mesh is assigned to one or more bones, with weighted factors for each bone. 
Theoretically, every face can be assigned to a nearly infinite number of bones (and it is, from a 
logical point of view, with a weighting factor of zero for most bones). However most toolkits 
like Ogre do not support more than four actual assignments.
Again, Maya does an initial assignment. The bones can then be moved around freely to see if 
the skin is moving along correctly. For humanoid creatures, problems are likely to occur around 
the shoulders, as there are several bones in this area (two shoulders, the head, and at least one 
torso bone) and an automatic assignment hence is difficult. Maya provides a tool for adjusting 
the weighting factors of the bones to the faces.
For example, if a face that is located below the axle on the torso is moving “outside” of the 
body when the character is moving its hand upwards, the bone located at the elbow has probably 
a too high weighting and the bone inside the torso has a too low one. Once the influence of the 
torso bones is increased, the face will not move along with the hand anymore.
In the animation mode, Maya provides a time line for defining the animations by creating key 
frames in which the model has a certain posture (given by the position and rotation of the 
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bones). The frames inbetween are interpolated. An important issue when creating repeating 
animations (as for walking) is that there must not be any gap in the animation when it jumps 
from the last to the first frame of the animation. Therefore it is advisable to define a key frame 
at the end of the animation that is identical with the first one. Once the animation is completed, 
this frame has to be deleted, as the frame would be played twice otherwise.
For walking animations, another problem to be avoided is slipping on the ground. This happens 
while a character is standing on one foot which is moving “backward” (initially, the animation 
is done torso-centered). If this is not synchronized with the movement speed the character will 
have in the game, it will appear to slip on the ground. A Maya tool allows to emulate a 
movement of the model and therefore adjust the speed of the animation. If the character is 
supposed to walk or run in different speeds, either the animation has to be accelerated, or a new 
animation has to be created.

In the end, the mesh, the texture and the information about the animation has to be exported 
using the MayaExporter plugin by Ogre3D. To check if the export succeeded, the files can be 
opened using the OgreMeshViewer [link 6].
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5. Game physics
After this short introduction into the creation of 3D-models, the more technical part of this work 
begins, explaining algorithms that are used within game engines. The main part of this chapter 
is how to create an efficient and scalable collision detection and how to deal with it in the game 
once a collision between the character, agents or the camera does happen.

5.1. Organization of the world / Space partitioning

One of the most important ways to improve the performance and scalability of a game is to 
divide the world into smaller areas. This partitioning can be used to to minimize the 
computation done by algorithms like collision detection or path finding. For example, to check 
if an object that is entirely contained in one area is colliding with any other object, it has to be 
checked only against objects that are (entirely or partly) in the same area. To do this efficiently, 
every area stores information about which objects are located within it. If the object moves, this 
information has to be updated.
To judge if a given partitioning is good or not in a given case, several factors are important:

• The areas should not be too big. The smaller the areas are, the less objects will be in it, 
reducing the cost of collision detection.

• However, the areas must not be too small and their shape and arrangement should 
correlate to the shape of the level. If the areas are too small, then a lot of updates about 
the location of the objects will have to be performed if the objects are moving around. It 
is also more likely for an object to be located in more than only one area at the same 
time, creating a computational overhead.

• If a lot of areas do not contain any objects at all, then resources are wasted.

The level can be partitioned on a 1-, 2-, or 3-dimensional basis. To partition on a 1-dimensional 
basis is usually not very helpful. The decision between 2- or 3-dimensional partitioning depends 
on the type of levels. Partitioning is most useful to efficiently prune away objects from 
computation that are not in the vicinity of a given object. So 3-dimensional partitioning makes 
sense if this can happen frequently along the height (one object is far above another one). This 
might be the case in complex space flight simulations, but as the degree of freedom is very 
limited along the y-axis in “101 Dalmartians”, a 2-dimensional partitioning is used here.

Another categorization of partitioning methods is to divide them into hierarchical and non-
hierarchical methods. For non-hierarchical methods, every point in the world belongs to exactly 
one area. The underlying structures are therefore usually quite easy to understand and to 
implement. In hierarchical methods, the world is divided into a given number of areas. These 
areas can be, but do not have to be divided again into a number of sub-areas, and so on. This 
way, a “space partitioning tree” is created. These methods are more complicated, but sometimes 
better suited for big levels.

Three standard ways of partitioning will be introduced, with increasing complexity and 
increasing scalability. They are described for the 2-dimensional case, but the concepts behind 
them also can be used for 3-dimensional partitioning.
For illustration, a sample level (a l-shaped island with four objects on it) will be partitioned 
according to the given methods. To show the time complexity characteristics of each method, 
querying which area a given point belongs to will be taken as an example.
After these three standard ways, the approach used in “101 Dalmartians” will be explained.
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5.1.1 Uniform grid partitioning

Uniform grid partitioning is the easiest one to 
implement. The whole world is divided into 
squares of equal size. Thus using squares of 
the side length of l, a level of size w*h is 
divided into (w/l)*(h/l) sectors. Querying 
which sector a point (x, y) is in is extremely 
easy and runs in O(1) time: [ Floor(x / l) |  
Floor(y / l) ]. The demerit is the memory 
usage, which has O(w*h) complexity, rising 
with the size of the level. If performs well if 
the objects are expected to be distributed 
homogeneous over the world. However if 
there are vast areas with no objects in it, 
while most objects are concentrated on certain 
areas, uniform grid partitioning becomes 
mostly useless (for a big l) or extremely 
memory consumptive (for a small l).

5.1.2 Quadtrees

Quadtrees are a more flexible way to partition 
the world using a hierarchical structure. The 
world is partitioned iteratively: the whole 
world is divided into four rectangles of equal 
size. For every rectangle, the number of 
expected objects in it is calculated. If it 
surpasses a given threshold, the rectangle is 
divided up into four more rectangles, and so 
on. In that way, a tree is generated, with the 
final regions being the leaves. The big 
advantage of quadtrees is that those leaves do 
not have to be on the same level. So if there 
are wide areas with only little objects in it, it 
will not be divided any further, while areas 
with many objects in it are getting further 
divided.
Querying a point means walking through this tree starting from the root. On every node, the 
algorithm will check in which one of the four sub-areas the point is, and go on to this node until 
it reaches a leaf. With rising size of the level, querying a point therefore runs in O(log n). This is 
slower than uniform partitioning, however given the much smaller memory footprint, this 
additional computation is usually worth it once the level gets bigger.

Page 8

Fig. 5.2: Less fine-grained areas at places where no 
objects are to be expected.

Fig. 5.1: Nearly half of all areas are outside of the 
island. They will never hold any information about 
objects and are therefore pure overhead.
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5.1.3 BSP-trees

BSP-trees are the most complex structure 
being introduced here. With BSP-trees, the 
level gets broken up into small pieces by 
recursively dividing the remaining area by a 
line (or a plane, in the 3D-case). The line can 
be defined freely, providing a line/plane-
equation (ax+by+cz-d = 0). If the (x/y/z) is 
being substituted by the coordinate of a point, 
the side of the plane the point lies on can be 
decided by the signum of the result (if it is 0, 
it lies on the plane, the equation is satisfied).
Constructing the BSP-tree can be done 
manually or automatically. If the BSP-tree 
will only be used for partitioning the level, it 
is advisable to construct it manually in a way 
to make it resemble the actual structure of the level. The flexibility of BSP-trees enables to 
define logical areas that approximate “physical” areas in the level. This can be a great help for 
path finding.
Querying which region a point is in works similar to Quadtrees – with the obvious differences 
that on every node there are only two sub-areas and the formula to decide between them is 
different. Time complexity is O(log n), too.

5.1.4 The system used in “101 Dalmartians”

“101 Dalmartians” uses a much more simple method of space partitioning: The level is mostly 
covered by nine manually defined rectangular areas. They are arranged as a linear list, so the 
time for querying a point is O(n). While O(n) is usually not a very desirable time complexity, it 
is no big problem for small levels with only few areas. With 9 areas, 4.5 checks have to be done 
on average to find the matching region. If nine areas were arranged in a balanced binary tree, 
3.2 checks had to be performed on average (7 leaves on level 3, 2 leaves on level 4, therefore 
((7*3 + 2*4) / 9 = 3.2 checks). The difference was too little to justify the more difficult 
implementation of a hierarchical system. However, if the level was much bigger, with, for 
example, 100 regions, then the difference would be significant: around 50 checks in linear 
arrangement, and (28*6 + 72*7)/100 = 6.7 checks in a binary arrangement on average.

5.2. Collision detection – the basics

The collision detection is one of the crucial parts in every 3D-game. Having accurate collision 
detection greatly improves the realism of the game and helps to create a good gameplay. If the 
player wants to go along a narrow passage that looks wide enough for the player, but he cannot 
enter it because a collision is detected although there should be none, this will be seen as a flaw 
in the game. It is even more irritating if the game does not detect a collision and the player ends 
up walking into a rock, or if his shots are missing the enemy although he aimed correctly.
On the other side, performing an accurate collision detection is extremely computation intensive 
and hence slows down the game. While algorithms to check for collisions between two complex 
meshes do exist, they belong to the world of movie production, not to the world of nowadays' 
computer games. So games usually have simplified models of the visible world used for 
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Fig. 5.3: With BSP-trees, the areas can resemble the 
shape of the level very closely.
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collision detection. Even with these simplifications and highly optimized algorithms, this part 
still makes up around 15% of the overall computation time in a modern 3D-game [1].

The basic technique of efficient collision detection is to represent the complex objects by a 
bounding volume or a combination of several bounding volumes that are, from a geometrical 
point of view, easier to deal with than the meshes. While the idea of meshes is basically the 
same – using vertexes, edges and faces as approximations to objects of our real world – their 
level of detail for rendering can be much higher thanks to powerful graphics cards.
In the simplest case, every object is represented by a single box that entirely contains the object, 
with the edges being parallel to the axis of the world coordinate system (Axis-aligned Bounding 
Box / AABB; see chapter 4.3.1.). With a representation like this, it is easy and efficient to 
prevent two objects from colliding. However, as in most cases the original object will not have 
the same shape as the box, there is a lot of empty space that is not part of the object, but will 
lead to a collision anyway. Two approaches are used to minimize this empty space, to make the 
bounding volumes fit the actual object more tightly:

• Using more flexible bounding volumes. Oriented Bounding Boxes (OBB), for example, 
can be rotated around all three axis.

• Using more than only one volume to compose a bigger entity.

Using these approaches, checking two meshes in the game for intersection can be reduced to a 
number of collision-checks between their bounding volumes. Taking two humanoids as an 
example, both might be made up of ten OBBs (two upper arms, lower arms, upper leg, lower 
leg, one torso and one head). To check them against each other, every OBB of the first object 
has to be checked against every OBB of the second one, which sums up to 100 checks in the 
worst case of non-intersection (if two OBBs are intersecting earlier, the rest of the checks can be 
skipped). 
In the game, for every frame, every object has to be 
checked against a rather big number of different 
objects (against every other object in the world, in 
principle). With only ten such humanoids, 90 checks 
between the humanoids, thus 9,000 checks of the 
underlying OBBs have to be made. It is obvious that 
further optimizations are needed.

To optimize this process, it is important to realize 
that most of the object will not collide. Therefore, it 
is more important to optimize the detection of non-
intersection than the detection of intersection. 
Hierarchical systems are a very effective way to 
achieve this.
The first step to detect non-collision is to use the 
information given by a space partitioning system as 
described in chapter 5.1. If two objects are in two 
different regions, there is no need to do any OBB-
checks between them as there can be no collision in 
the first place. It is important to note that a object can 
be in two or more regions at the same time, so in 
order to determine in which regions an object is, it is 
not enough to check the centroid of the object alone.
The second step is to represent the object itself as a 
hierarchy of bounding volumes. In the first level, the 
object is represented by a single big volume that does 
not fit the object very tightly. It should be rather too 
big than too small. The most important property is 
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Fig. 5.4: 1st-level-OBB / 2nd-level-OBBs

Fig. 5.5: The two 1st-level-OBBs intersect, but 
there is no intersection on the 2nd level.

Fig. 5.6: An (incorrect) collision is detected on 
the 2nd level. To get the correct result, a 3rd 
level has to be introduced.
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that every other bounding volume of this object is entirely contained in it. Given this property, if 
the two outer bounding volumes of two objects do not intersect, then there is no intersection 
between any volumes on lower levels or the meshes. If they do, then the bounding volumes of 
the next level are checked against each other. If no couple intersects, there is again no collision. 
If one couple does, then the algorithm recursively goes down the hierarchy until two leaves are 
colliding with each other.
In the worst case this procedure can be even more computation intensive than using no 
hierarchy at all, if all bounding volumes of the higher levels of the search tree are colliding with 
each other. In that case, all leaves' bounding volumes have to be checked against each other as 
in the linear case, plus the computation for the overlying bounding volumes. But as these cases 
are extremely rare, this is not a real disadvantage.

The big disadvantage of such a hierarchical system is the difficulty to design the bounding 
volumes. The most practical way to do so is probably to write a plug-in for Maya to support the 
creation of bounding volumes inside the modeling environment.
For animated objects like walking humanoids, one additional problem exists: their shape 
changes all the time (for example by moving the hands and feet), so the bounding volumes have 
to change as well. While it is impossible to specify the location of the bounding volumes for 
every animation state manually, the bounding volumes can be attached to the mesh's underlying 
skeleton. As the movement of surface of the hands and feed are defined by the bones they are 
assigned to, this should give a good approximation. The one thing to remember is that in a 
hierarchy, only the leaves are attached to the bones and the bounding volumes in the upper 
levels have to contain the leaves entirely. So after adjusting the position of the leaves to the 
bones, the whole bounding volume hierarchy might have to be readjusted.

5.3. Collision detection: Bounding Volume / Bounding Volume

This chapter explains algorithms for detecting intersection between different kind of 3D-objects. 
They make up the base for the collision detection as described in the previous chapter. Only 
algorithms to detect intersection between bounding volumes of the same kind are explained. In 
some games it might be effective to use different kinds of bounding volumes to approximate 
different 3D-objects. In that case, the number of involved algorithm increases quadratically with 
the number of bounding volume types used. As this would exceed the limits of this work, only 
homogeneous systems are considered.

5.3.1 Spheres

Spheres are the kind of bounding volumes that are easiest 
to handle. The bounding volume is described by a 
coordinate in the world (the centroid) and a radius. To 
check if two spheres are intersecting, the distance 
between the centroids c1 and c2 have to be compared to 
the sum of the two radii r1 and r2:
intersection = ( (r1 + r2) >
       sqrt( (c1.x – c2.x)² + (c1.y – c2.y)² + (c1.z – c2.z)² ) )

(The C/C++ syntax is used.)

As the square root is more complex to compute than the square, usually the squares are 
compared:

intersection = ( ((c1.x – c2.x)² + (c1.y – c2.y)² + (c1.z – c2.z)²) < (r1 + r2)² )
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Fig. 5.7: (Non-)intersection between two 
spheres: |c1-c2| > (r1+r2)
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5.4. AABB

Axis-Aligned Bounding Boxes (AABB) are nearly 
as easy to handle as spheres. All six faces are 
parallel to one of the planes defined by two of the 
base vectors of the coordinate system. Every one of 
the 12 edges is parallel to one of the base vectors. 
To define an AABB, the coordinates of two 
opposing corners are sufficient. When deciding 
which two corners to take, it is advisable to take 
the one with the smallest coordinates (min_x, 
min_y, min_z) and the one with the biggest 
coordinate (max_x, max_y, max_z) – they are 
always opposing corners.
Given this information of two AABBs b1 and b2, 
checking for intersection is easy:

intersection = (
b1.max_x > b2.min_x && b1.min_x < b2.max_x &&
b1.max_y > b2.min_y && b1.min_y < b2.max_y &&
b1.max_z > b2.min_z && b1.min_z < b2.max_z
)

(The comparison is supposed to return “false” as soon as the first comparison is false to save computation 
time. The formula is deduced from the Ogre3D source code.)

5.4.1 OBB

Oriented Bounding Boxes (OBB) are boxes as well, but more flexible as they can be rotated 
arbitrarily in the space and thus fit much closer to an object. An OBB can be defined by its 
center and three perpendicular vectors pointing to the center of three adjacent faces. Another 
way is to provide a center, the length of the three sides and a rotation quaternion (or any other 
structure suitable to define a rotation).
Checking if a single point is inside or outside of the OBB is simple: given the OBB defined by 
the centroid c and the three perpendicular vectors v1, v2, v3, the point p is inside, if:

inside = ( |(c-p)*v1| < 1 && |(c-p)*v2| < 1 && |(c-p)*v3| < 1)
* is the dot product

Checking if two OBBs are intersecting is more complicated and several approaches do exist. A 
concept easy to understand is to check if any of the edges of one OBB is intersecting with a face 
or edge of the other OBBs. If there is an intersection, the two OBBs do intersect, if there is 
none, then only one more check has to be performed for the case that one box is entirely 
contained in the other box. Checking if the centroid of a box is inside the other box provides the 
necessary information. While this method is conceptually easy to understand, a lot of single 
checks have to be performed, checks of different types (edge/edge, edge/face, point/OBB).
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Fig. 5.8: Intersection between two AABBs.
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The Separating Axis Theorem (SAT) provides 
a more “homogeneous” algorithm to check for 
intersection using less computation and can be 
extended to any convex polyhedra.
For OBBs, the SAT defines 15 axes. The 
boxes are “projected” on them. If the 
projections of the OBBs do not overlap on any 
one of these axes, then there is no intersection. 
If the projections overlap on every single axis, 
then the OBBs do intersect.
The 15 axis are defined as follows:

• 3 axis that are orthogonal to the 6 
faces of the first OBB, and the same 
for the second one.

• For each pair of base vectors of the 
two OBBs (3 vectors for each OBB, 
thus 9 combinations), the vector 
orthogonal to both vectors is an axis.

Note that the axis do not have an actual location in the space, they are only directions defined by 
a vector. The vectors of the axis do not have to be normalized, as only the dot products will be 
compared.
For each axis a, the following steps are (theoretically) done:

• The vector between the centroids (c1, c2) of the OBBs is projected on the axis. The 
projected distance d between them is “d = (c2 – c1) * a”.

• The vectors from the centroid of the OBB to its 8 vertexes v are projected on the axis; 
for each OBB this will give 8 values “dv = (v – c) * a”.

• The vertex that results in the most positive value is taken for each OBB. The most 
positive and the most negative value of an OBB are always the same except for the 
signum.

• If “d > (dv1 + dv2)”, then there is no overlap, thus no intersection of the OBBs. If “d < 
(dv1 + dv2)”, then there is an overlap for this axis. This does not automatically mean 
there is a intersection, so the same steps have to be done for the next axis.

Like this, 17 dot products have to be calculated (distance between centroids, and for 8 vertexes 
of each OBB). To proof an intersection, this has to be done 15 times, which results in 255 dot 
products.
This can be reduced, using the special properties of a rectangular box. The vectors from the 
centroid to the centers of 3 faces are given. Using them and their negative counterparts (which 
are the vectors to the other 3 faces), the vectors to the 8 vertexes can be calculated by summing 
them up, using the 2^3=8 combinations of positive/negative vectors. The dot product of one 
vertex vector and the axis (dv) is the same as the sum of the dot products of the three base 
vectors (b1, b2, b3) used to create the vertex vector and the axis. Thus the most positive value of 
dv can be calculated by:

dv = |b1*a| + |b2*a| + |b3*a|

This reduces the number of dot products needed to get the most positive value from 8 to 3, and 
therefore the total number of dot products to be calculated to proof a intersection to 
(1+2*3)*15=105 (150 less than before).
In most cases, there will be no intersection. For that case, 8 axes have to be checked on average 
until one is found with no intersection.
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5.5. Collision detection: Bounding Volume / Ray

A ray is defined by a origin ro and a vector rv. Rays are commonly used to check if an agent 
can see an object. In that case, the origin is the position of the agent and the vector is pointing to 
the object. Chapter 7.1 describes the algorithms for visibility detection in detail.

5.5.1 Spheres / Rays

To check if a ray intersects a sphere, first of all it has to be checked if the origin of the vector is 
within the sphere. If it is, then there has to be an intersection.
If it is not, then the dot product d of the vector from the ray's origin to the centroid sc of the 
sphere, projected onto the ray's direction vector has to be calculated: 

dp = rv * (sc – ro)
If it is negative, then the sphere lies on the “invisible side” of the ray, so there can be no 
intersection. If it is positive, then the closest point on the ray to the centroid can be calculated by 
p = dp*rv. All that is left to do is to check if this point is within the sphere. With the sphere's 
radius being sr:

x = ( (sc.x – p.x)² + (sc.y – p.y)² + (sc.z – p.z)² )
intersection = (x < r²) [7]

5.5.2 OBB / Rays

Only an algorithm for intersection between OBBs and rays will be explained, as this works for 
AABB/ray-intersection as well. For AABBs, a more efficient intersection test using Plücker 
Coordinates is described by Mahovsky and Wyvil [8].
OBB/ray-intersection can be done using the Separating Axis Theorem [6]. Both the OBB and 
the ray (infinite line segment) are projected onto the axis. Six axis have to be checked:

• The three base vectors of the OBB.

• The three cross products between the base vectors of the OBB and the direction vector 
of the ray.

However, as rays are infinite into one direction, they cannot be seen as a “degenerate OBB” 
[Link: 17] like normal line segments. As there can be no centroid for the ray, the overlap test 
has to be modified slightly. In this case, the axis needs an exact location in the space, defined by 
the given vector v and an arbitrary point p. The overlap test can be done like this:

• The origin of the ray is projected onto the axis (aro = p + v * (v * (ro – p))).

• A different arbitrary point on the ray is projected onto the axis (e.g. arv = p + v * (v * 
(ro + rv – p))).

• If aro == arv then the ray is orthogonal to the axis and only this point is the projection. 
Otherwise, aro splits the axis into two halves – the one with arv in it is fully covered by 
the projection.

• In the same way as the ray's origin, the eight vertexes of the OBB are projected onto the 
axis. If any of them lies on the same half of the axis as arv, then an overlap exists.

If an overlap exists for all six axes, then the ray intersects the OBB. If a non-overlap is found on 
any axis, there is no intersection and the algorithm can stop.
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5.6. The system used in 101 Dalmartians

101 Dalmartians uses a 3-step collision-detection, including the information provided by the 
partitioning of the level, AABBs and a stripped-down version of OBBs.
After an object is moved internally, it is checked for collision against every other object in the 
world. If there is no collision, the movement will be kept – if there is, then the movement is 
canceled. The three steps are:

• First of all, the information of the level partitioning is used to ignore objects that are not 
in the same region as the reference object. As there are 11 regions, this reduced the 
number of checks by 91% (if the objects are homogeneously distributed over the 
regions).

• In the next step, the AABBs of the objects are checked against each other. Ogre3D 
generates AABBs for every object in the world automatically. The documentation of 
Ogre states that this data is not supposed to be used this way, as the data is only an 
internal cache that is usually only updated while rendering and does not include the 
changes after the last rendered frame. However, there is an (also internal) function that 
forces an update, so after calling it manually the AABB indeed does include the 
movements from the current frame. As the AABB is guaranteed to include the whole 
object, there can be no collision between two objects if their AABBs do not collide. So 
in most of the cases (the objects are not very close to each other), no OBB-check has to 
be performed.

• As already stated, 101 Dalmartians uses a simplified version of OBBs for close-range 
collision-detection. In that, the three lengths of the box can be defined and the box can 
be rotated around the y-axis, however not around the x- and z-axis. This makes them 
less flexible, but using the Separating Axis Theorem, less axes have to be checked to 
show (non-)intersection, which makes the algorithm faster. The main reason for this 
decision however was another one: there was no time to implement a Maya-plug-in (as 
described in chapter 5.2) or an algorithm that creates OBBs automatically from the 
faces and vertexes of the object. So the OBBs had to be defined manually using a self-
written OBB designer. It was predictable that this manual part was about to bring in 
some major inaccuracy. In addition to that, the OBBs are static per object and do not 
take into account the position of the bones of the object. With this kind of inaccuracy, 
implementing three degrees of freedom in the rotation appeared to be an overkill. As the 
characters itself only rotate around the y-axis (when turning left or right), this was the 
one rotation implemented. In the end, every object is composed by 1 (e.g. the main 
character) up to 11 (e.g. the nest of the alpha-female) OBBs, not using any further 
hierarchy. So to check the character against the nest takes 1*11=11 OBB/OBB-checks 
(given that there is a intersection on the AABB-level).

The reached accuracy was sufficient in most cases, given the time constraints of this project. It 
it possible to walk under the trees (the OBB describing the tree trunk is smaller than the OBB 
describing the treetop) and between the pillars of the arch (which was designed to show the 
advantage of the OBB-approach used over simple AABBs). The one object with really bad 
accuracy is the nest, as its round shape is very complex and it was designed very late in the 
period of deadline-panic.

Even with all these simplifications used (less degree of freedoms for the OBBs, manually 
adjusted, using no OBB-hierarchy and not taking into account the internal movement of the 
characters like raising hand), the system still gives a satisfactory result in this case, because of 
the limited freedom of the game itself. If the character could move around more freely, like 
flying or jumping high, or the camera could be moved around by the player, the flaws became 
more apparent: the player is stopping a bit before she reaches the tree trunk, and the round shape 
of the tree top is not reflected by the OBBs very well.
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5.7. Collision Management

One more detail concerning gameplay and collision detection was tricky: the rotation of the 
player when moving left or right with the mouse. It is possible that a collision occurs after this 
rotation. The easiest way to handle this case is to abort the rotation and do nothing. While this 
prevents the collision, it has some negative impact on the gameplay, as it is disturbing for the 
player not to be able to move the way he wants for no apparent reason. So in that case, the 
rotation is done anyway, but with an automatic change of the character's position: Small moves 
to the front, left, right and back are done (taking the slope of the ground into account) and 
checked for collision. If one of this movement results in a state without collision, it is done. In 
the very unlikely case that all four movements result in another collision, the rotation is aborted 
and it is up to the player to get out of this mess. While playing the game for many hours, this 
occurred only in two kind of situations: when the player walks under a tree while the ground has 
a slope going up on the side of the tree the character is on (the automatic movement tries to 
move the character away from the trunk, however due to the slope the head of the players 
bumps against the treetop), and when the character is surrounded by creatures. In the latter case, 
she can free herself by kicking the blocking creatures away.

A related gameplay issue is the “sliding along a wall”: when the character runs against a wall, 
but not frontally but only slightly while walking rather along the wall than against it (the angle 
between the character's movement and the wall is smaller than 45°), the character is not 
supposed to stop, but to slide along it. This is done by the same technique as described above: if 
the collision occurs, the game checks if a movement to the side (movements to the front and 
back are not helpful in this case) can resolve the state of collision. If yes, the character is moved.
In that case, it is important to keep in mind the issue of the maximal walking speed of the 
character to prevent some kind of “Doom running trick” (in the old 3D-shooter DOOM it is 
possible to run faster by walking diagonal): after this automatic movement, the vector between 
the original position and the position after the movement has to be calculated, scaled down (in 
the method described above, the automatic movement is always orthogonal to the original 
movement, so the resulting movement is bigger than the planned one) to walking speed, and 
checked against for collision.

5.8. Heightmaps

Heightmaps are a method to create the ground the character and the agents can walk on. The 
principle is simple: for every (x/z)-coordinate, the ground has exactly one y-coordinate. 
Therefore, the relevant information about the ground can be stored in a two-dimensional array, a 
heightmap. By this, creating the ground becomes very easy: a gray-scale-image can be used, 
with the x/y-coordinates of the image representing the x/z-coordinates of the 3D-world, and the 
gray-values representing the height. To edit this heightmaps, any paint-program like Gimp or 
Photoshop can be used. Mountains in the world are represented by areas of light gray or white, 
slopes by color gradients.
A second image of the same size is necessary to define the color of the ground at a given point.
Ogre3D supports heightmaps when using the TerrainSceneManager (which is part of the 
“OctreeSceneManager”-PlugIn delivered with the standard-package of Ogre). Every pixel in the 
given heightmaps corresponds to one point in the level and its height. The height at a given x/z-
coordinate can be queried using the “getHeightAt(x,z)”-function, for example when a character 
moves to a new position. If the height of a pixel is queried that does not have a corresponding 
point on the heightmap, the height is bi-linearly interpolated by the surrounding points.
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Using heightmaps greatly eases the creation of the ground of the level, but comes along with 
heavy restrictions on the level design: complex structures like the famous cave behind the 
waterfall, or even bridges are impossible to create using the plain heightmap-approach.

In the level of 101 Dalmartians, bridges (or rather wooden boards) were needed in order to have 
a way over the river that separated the left and the right part of the level. This cannot be done 
using heightmaps, because you have to be able to look at the river under the bridge. So a new 
layer was put over the Ogre-getHeightAt()-function to separate the height information used for 
rendering the ground and the information used for obtaining the height for the characters. In 
most cases, the information is identical, but in the case of the bridge, the height for the 
characters (given by the bridge) is above the height of the ground (given by the river).
The big limitation still remains: although it is possible now to look under the bridge, it is still 
not possible to walk under it, as there cannot be two accessible places for one x/z-coordinate. 
There might be tricks to by-pass this limitation on a small scale as for the bridge, however they 
usually end up to be very inelegant. (For example: providing the wrapper around the Ogre-
getHeightAt()-function with the current y position of the character. The function can return 
either the bridge- or the ground-height, whichever is closer to the given height.)

There is one more gameplay-related design-decision concerning heightmaps: what happens if 
the player walks towards a steep cliff? He can either be stopped, or fall off the cliff (probably 
involving health damage or death). In 101 Dalmartians, it is not possible to jump down a cliff or 
a bridge or walk along any path that is too steep.

The steepness of a slope can easily be calculated: get the difference of height between the 
current and the desired position, and divide it by the distance between the points (not taking the 
height into account). If the value surpasses a given threshold, the slope is too steep. However, 
this is not enough, as this only gets the slop along the axis the character is moving. If there is a 
very steep cliff (steepness factor “s”), the player could still walk it up, by taking a very small 
angle “a” to the cliff instead of trying to walk up frontally. The calculated steepness is “s * 
sin(a) = 0”, if the player walks along the cliff (a=0/180), and it is equal to s if the player tries to 
walk it up frontally (a=90). For a small a, the factor could be below the steepness threshold and 
make the program assume the character can walk on – which is just unrealistic. A simple work-
around is to calculate the two steepnesses orthogonal to the walking direction, and compare the 
biggest result to the threshold. If “s * sin(45°)” is bigger than the threshold, it will not be 
possible to walk it up anymore.

Page 17

Fig. 5.10: Heightmap of 101 
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5.9. Camera control

In 1st-person games, camera control is easy: the camera is fixed at the position of the character's 
eyes. The character is invisible, and a collision between the camera and game elements cannot 
happen.
For 3rd-person games, camera control is a bit more complicated, as the camera and the character 
have to be treated independently to a certain degree. While the player controls the character, the 
game has to come up with a way to move the camera smoothly in a way that the player knows 
where the character is and sees the most relevant part of the character's environment.
In the simplest case, the camera is at a fixed position behind the character, in most cases slightly 
above the character's head to get a good view on what lies in front of the player. However, a 
collision test for the camera is needed: if the character stands in front of a wall, with her back to 
the wall, then the camera would vanish within it. Several approaches can be used to handle this 
case – the camera could move closer to the character, or even changing to a 1st-person 
perspective temporarily. Alternatively, it could move upwards on an elliptic course around the 
character. The most important thing is not to make this switch too sudden, which would irritate 
the player. Rather, the camera should gradually move to the desired place, accepting the 
drawback that the vision is occluded for a moment.
In “101 Dalmartians”, this way of camera control was used. The fixed position relative to the 
character's position made it possible to use the camera for aiming and shooting. It was a game 
design decision to let the human aim himself and not to use an automatic aiming system as 
several other 3rd-person games like “Tomb Raider” do. A cross-hair is in the middle of the 
screen, and the player will shoot at whatever the cross-hair is targeting at. This was fairly easy 
to implement, but makes the game a bit hectic: the camera moves jerkily around, as jerkily as 
the player's movements are.

Some games prefer a smoother camera control. If the character stands still first, but then starts 
to run, then the camera should not move as quick as the character immediately, but accelerate 
slowly to give smooth camera movements. In that sense, the camera gets undocked from the 
player. To achieve this, the camera's current position and orientation, the goal position and 
orientation (which is identical to the camera's position in the fixed position's case), and the 
movement speed and direction position- and orientation-wise have to be kept track of. If the 
difference between the current and the goal parameters are too big, the movement speed has to 
be increased (gradually), if it is little, the movement should be slower.
A common way to achieve this are so-called PID-controllers, “proportional integral derivative 
controllers”. PID-controllers are basically a formula that returns the new position of the camera 
based on its current position, the goal position and its current velocity. As the way a camera or 
any other object controlled by a PID-controller behaves in terms of speed and stability only 
depends on three factors provided by the game designer (one for the proportional, the integral 
and the derivative part of the formula – hence the name), it is comparatively easy to get good 
results quickly. While PID-controllers will not be covered in detail here, a lot of articles and 
examples about it can be found, for example in [Link: 20].
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6. Path planning

6.1. Waymarkers

Waymarkers are an essential part of designing the behavior of agents in a 3D-world. While it is 
possible – and necessary, to a certain point – to give the agents perception of the world and the 
ability to draw conclusions from this percepts (the most important one is probably the ability to 
see the main character when she approaches), it is an extremely complex task to design an 
“ideal” artificial intelligence that acts reliable using only individual percepts, memories and 
experience. Even if it could be built, the computation involved would be too time-consumptive 
to simulate many agents in a real-time game.
For example, just assume a creature is standing at one riverside and wants to go to the other 
side. Going straight through the water obviously does not work, so it has to find the bridge that 
happens to be 100m away, leading over the river. The creature has to find out: is there a way to 
the bridge and from the bridge to the destination? Is the bridge actually traversable? And how to 
avoid obstacles that are in the way between the current position and the bridge, or the bridge 
and the destination?
Waymarkers are a “walkaround” to such problems. Basically they are a set of arbitrary data 
assigned to a location in the level. They provide abstract meta-data about the surroundings to 
the agents and by that release them from the duty of drawing conclusions based on pure 
perception. In a way, a tight net of waymarkers can be seen as a “meta-level” of the actual level.
Path planning problems like the one mentioned above are a common use for waymarkers. In the 
river-example, there could be a waymarker w1 close to the original position of the agents and a 
waymarker w2 close to the destination. W1 stores information about how to get to w2 – so the 
creature immediately knows there is a bridge close-by and can choose this path.
However, waymarkers are not limited to path planning. Examples for further uses are:

• Information about properties of the environment. A waymarker within a cave might 
indicate that this is a good place to hide, but, once the agent is seen by the player, a bad 
place to run away to (because it might end up being trapped there).

• Instructions for the agents. On the river at w1, the instruction could be “IF (destination 
= w2 && has_ability(agent, “super_high_jump”)) THEN 
agent.super_high_jump(w2)”. For example, as Perdita cannot move in “101 
Dalmartians”, Pongo has to drop off the food for her at a specific point. He walks to a 
specific waymarker, and then gets the instruction to rotate to 270° in the world 
coordinate system and then drop the food.

Using waymarkers extensively is a good way to save performance and ease the programming. 
However, when used too much, they come with a drawback: the agents might end up knowing 
too much about their environment, which does the opposite of the original intention to create a 
realistic game. Creating intelligent and interesting agents is not only about giving them as much 
information as possible, but also about giving them non-awareness about certain things and 
including some randomness and errors to their behavior. A rule of thumb is to include only this 
kind of information in a waymarker that could be easily recognized by a real living creature / 
human in the same situation. If the bridge over the river is only 100m away and visible from this 
point, can be included to the provided information. However, if the only bridge is 2km away 
and cannot be seen from there, it might make a game more realistic to make the agent wander 
around clueless into the wrong direction (unless it has individual memories about the level, of 
course).
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6.2. Waymarker-based path planning

At least two sets of data are necessary to do successful path planing based on waymarkers: the 
coordinates of the waymarkers in the level, and the traversable connections between them. A 
traversable connections exists if there is no obstacle in the straight way between two 
waymarkers, or the obstacles can easily be avoided by the agent using some local steering 
mechanism.
If there is no separated area in the level that cannot be reached at all, then, using these 
connections, every waymarker should be reachable from any other waymarker over a number of 
in-between waymarkers. A lot of well-known algorithms exist to find the shortest path between 
two waymarkers – including plain breadth-first, A*-search and Dijkstra's algorithm.
However, two major design decisions have to be made before beginning to implement the 
search:

• Should the path be calculated on-the-fly when it is needed, or should it be precomputed 
and stored as a lookup-table? The on-the-fly-solution may result in a lot of computation 
to be done during the game if there are a lot of waymarkers. The lookup-table, on the 
other side, has two big disadvantages: first, as the shortest path from every waymarker 
to every other one has to be stored, the memory consumption increases quadratically 
with the number of waymarkers, which can lead to a huge memory footprint. Secondly, 
they are less flexible. To illustrate the advantage of a flexible system, imagine a very 
narrow path between two waymarkers. It might be big enough for a small critter, but the 
big fat monster would get stuck in it. So the connection between those two points exists 
for the small, but not for the big one, which results in different shortest paths. This fact 
cannot be represented by using one lookup-table, so either there has to be a lookup-table 
for every type of agent, or the small paths cannot be used at all.

• Will the search-algorithm work on all waymarkers, or will a hierarchical approach be 
used to reduce the computation time? Using the hierarchical approach obviously results 
in a more complex system (and more coding), but unless there is really a very small 
number of waymarkers, this is usually worth the effort (both the computation time and 
the memory usage will be reduced).

The same structure to divide the world into several logical areas for collision detection can be 
used for path finding. In the case of “101 Dalmartians”, around 350 waymarkers are scattered 
over 9 areas. So, around 40 waymarkers are in each area.
Now the path finding problem consists of two parts: to find a path within one region, and to find 
a path from one region to another one. The Intra-region-search is exactly the same as without 
any partitioning, just with a reduced number of waymarkers. 

In “101 Dalmartians”, a slightly modified version of A*-search is used to precompute the Intra-
region-routes into a lookup-table. The route from every waymarker in a region to every other 
waymarker is computed individually, using a search tree. The nodes of the search tree are the 
paths to waymarkers. The cost function for the search is the distance between the two 
waymarkers in the level:

f(w1, w2) = sqrt((w1.x-w2.x)² + (w1.y-w2.y)² +(w1.z-w2.z)²)

The fringe of the A*-search is implemented using the MultiMap-structure of the C++-STL – the 
nodes of the search tree are the values and the assigned costs the keys.
The algorithm starts with the first waymarker, an empty path and a cost value of 0. In each step, 
the the node with the lowest cost value is taken. If the last waymarker of the path is the goal 
waymarker, then the algorithm is finished. If it is not, then the possible follow-up paths, the 
child nodes, are created and the cost values assigned. If one of the newly created paths is 
leading to an already visited waymarker, then it is immediately discarded, to prevent loops. 
Before adding the children to the fringe, one more check is performed: if there is already a path 
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stored in the fringe that leads to the same waymarker as one of the children, then either this path 
is deleted from the fringe or the child is discarded – whichever has the higher cost value. The 
remaining children are added to the fringe and the algorithm starts over again.
That way, all possible ways from one waymarker to another one are computed and stored in a 
cache file. However, to save space and memory, not the whole path is saved, but only the first 
intermediate step - if the shortest path from w1 to w7 goes over w2 and w5, then only “From: 
w1 To: w7 Next: w2” is saved. This is enough: a separate entry for the path from w2 to w7 
exists and will be “From: w2 To: w7 Next: w5”, and one entry “From: w5 To: w7 Next: w7” - 
so the path can easily be reconstructed using only the next step for each waymarker.

The Inter-Region-region part is a bit more tricky and includes two big design decision: is it 
enough to have only one point where the agents can go from one region to another specific one 
(called “boundary point”), or are there more points? The boundary points can either belong to 
both regions (thus breaking up the 1:n-relation between region-waymarkers and changing it to a 
[1..2]:n-relation), or there are two different waymarkers at the same location, belonging to 
different regions (which comes along with some messy implications when trying to figure out 
the closest waymarker to a given point, as there are suddenly two of them).
If there is only boundary point between two regions, then going from a point at one region to 
another point at an adjacent region is straight-forward: look up the path from the origin to the 
boundary point within the first region and walk to it. Then look up the path from this boundary 
point to the destination within the second region and go on.
If there are multiple boundary points for one border, then the agent has to decide which one to 
take by summing up the distances to walk (path costs), compare them to each other and choose 
the shortest path.
The second decision involves the case that an agent might want to go to a region that is not 
adjacent to its current one and there might be different ways of reaching it, using a different set 
of boundary points. Two ways of handling the path costs do exist – one is more efficient, the 
other one is more accurate. The efficient way is to make the decision which regions to trespass 
independently of the actual path cost. The cost of every border-crossing is 1, thus the agent will 
try to minimize the number of border-crossings. The paths between the regions can be stored 
just like the paths between the waymarkers: “FromRegion: 1 ToRegion: 2 NextRegion: 2”.
In most of the cases, this will indeed result in the shortest path. However sometimes there might 
be cases where there is a shorter way than going to the boundary point of 1/2 first, that goes 
over another region (from another pair of waymarkers in region 1 and 3, going to the boundary 
point 1/2 will still be the shortest way). To get the shortest way for sure, a search has to be 
performed with the nodes of the search tree being the paths over different sets of boundary 
points. In this case, however, there is no practical way to precompute all possible combinations, 
thus the search has to be performed during the game.

“101 Dalmartians” uses the simple way: only one boundary point and precomputed inter-region-
lookup-tables (that do not always give the real shortest path). The level was designed with this 
constraint in mind: the logical regions correspond to “physical” regions in the level, and the one 
boundary point between two regions is indeed the only physical way to get from one area to the 
other one. For example, the hideout of the alpha-female on top of the mountain (refer to fig. 
5.11) is one region, which is only connected to one other region by the tiny mountain path 
which leads to the shore of the western island. From the island, there are only two ways to the 
mainland, using the two bridges leading to two different areas on the mainland. So if an agent 
wants to go from the nest to somewhere in the mainland, it has only few choices anyway, so the 
algorithm hardly can choose a longer way than actually needed. And even if it did, it wouldn't 
matter in this game: traveling from one region to another usually takes them a long period of 
time, so before they arrive they will get hungry anyway, discard their original plans and look for 
food instead...
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7. Artificial Intelligence

7.1. Perception

When creating the artificial intelligence of the agents, giving them a realistic perception is one 
of the most important parts in order to create interesting gameplay. The reason for this is that in 
those parts of the game where the main character is hiding from the agents or sneaking up to 
them, the player will most likely notice flaws in the agent's intelligence. If the agent is far away, 
minor mistakes will not be noticed, and in active combat the player will be too busy to notice. 
However, if the character shoots from right behind and the agent does not hear it, it will 
immediately appear to be very stupid. Or if the character is hiding behind a big rock and the 
approaching agent can see him anyway, this will be rather disturbing. Of course, both kinds of 
behavior can occur intentionally - for example if the agent is deaf or, for the second example, 
has super-natural powers, x-ray-eyes or something like that. But given the success of games 
whose popularity rely nearly exclusively on the sneaking-part (e.g. Metal Gear Solid), it is 
usually a good idea to give the player a way to take a clever, sneaky way to approach the agents 
in order to take care of them.

Agents can have different kind of senses. The most important ones are the sense of seeing and 
hearing, followed by the sense of smell (when an agent can smell if the character has been at the 
same place before). The sense of touch and taste are less likely to play a big role in the 
gameplay (although the good taste of the character's flesh might be a big motivation for some 
monsters).
All perceptions will usually deal with one question: does the agent notice the presence of the 
character? To model the awareness of other agents based on perceptions might increase the 
realism of the group behavior (if an agent does not know about the presence of another agent, it 
might decide to avoid the character due to its own individual weakness, although there actually 
is another agent nearby). However, these situations do not occur frequently and most likely the 
player will not notice the minor inconsistency if the agent are given global knowledge about 
each other's position. To make sure this is not seen as an inconsistency, the agent might make 
some noise when noticing the character, so it is implicitly explained why the agents know about 
each other (they can hear each other's noises).

The sense of hearing is the easiest sense to implement, as it can be modeled less accurately, 
especially in out-door environments. The hearing is usually modeled as omni-directional and 
not influenced by objects between the source of the sound and the perceptor. Every object in the 
world can be a sound source, constantly emitting sounds of different loudness (zero loudness, if 
no sound is emitted at all). The loudness of the sound decreases quadratically with the distance 
from the source, and if it surpasses a given threshold, then the agent will notice it. Thus: 
notice = ((loudness / distance²) > threshold)

The threshold depends on the hearing capabilities of the agent, but it can also depend on the 
environment - if dozens of other noisy creatures are around and it is raining heavily, then the 
threshold is higher. An elegant way to take this into account is to sum up the loudness of all 
sound emitters around and check how much of this overall sound is due to the source to be 
checked. 
notice_x = ((loudness.x / E i=0...n(loudness.i)) > threshold)

The loudness of the environment (for example a loud waterfall whose noises might drown other 
noises) can be modeled either by "invisible sound sources", or be provided by nearby 
waymarkers (interpolating the loudness given the information of the 1...n closest waymarkers).
For hearing, it might be worth to include a certain uncertainty in the information about the 
position of the sound source. Humans will get the approximate direction and distance of the 
sound source, but by far not as accurate as by seeing the source with the eyes. 
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The sense of smell is not used very often in games, as it gives the agents only little information 
– basically only the information that the character has been there not too long ago. The agents 
might get alerted if they perceive the character's scent and go on patrol. The only tricky part 
about the smell is how to store the information about the character's scent.
If the perception of the agents will only check if the character can be smelled, then the most 
convenient way is to store it in the character-object. The trace can be stored as a fixed-length 
linked list of coordinates. Every x milliseconds the current position of the character is added at 
the front of the list and the last element is removed (the scent at this position got too weak to be 
noticed by the agents). It is important not to do this every frame: that way, the period of time 
that the character can be traced would depend on the current frame rate. Besides, this would be 
too much of an administrative overhead. Every time the agent attempts to smell the character, it 
has to be checked if the agent is within a certain distance of any point stored in the linked list. 
The maximum distance to the point might depend on the position of it in the linked list (a 
smaller maximum distance if the position is at the end of the list) to model the fading of the 
scent. The advantage of this approach is that the direction the character moved to is implicitly 
stored in the linked list – so if the agent has the abilities of a sniffer dog, it might start to follow 
the character based on his scent.
If the agent has to be aware of more than just the character's smell (for example, a creature 
might get alerted if it smells a dead body of a fellow creature even if it neither sees nor hears it), 
then again the nearby waymarkers can be used to store this information. Every waymarker 
needs a field for each kind of smell that can occur to indicate the smell's intensity. This 
information is updated every x milliseconds by something like:
wm.value_new =
max(0, (wm.value_old – declineFactor), (1 - (|wm.pos – source.pos| / maxDistance)))

In this example, the smell of an objects decreases linearly both in space and over time from 1 
(maximum smell) towards 0 (no smell at all: the source is farer away than maxDistance and has 
not been around since “x * (1 / declineFactor)” milliseconds).

Vision is by far the most difficult sense to model as it has to be most accurate (mistakes made in 
the sense of seeing are more obvious to the player than in the sense of hearing and smelling).
Two different approaches exist: object-based and image-based techniques. Image-based 
techniques are simple in principle and more accurate, but very computation intensive, complex 
in the implementation and therefore not used very often: basically it does the whole rendering 
process from the agent's point of view, without textures and pixel shaders. Only the character's 
object is marked with a special color. If there are areas of that color in the rendered image, then 
the agent can see (parts of) the character. If there are none, then the character is either not in the 
field of vision, or occluded by objects, hence the agent cannot see him. Doing this whole 
process for each agent is obviously too expensive, and is highly complex as it usually involves 
some special interaction with the 3D-accelerator of the graphics card.
Therefore, in most cases object-based techniques are preferable. The basic idea is to cast one or 
more rays from the agent's eyes in the direction of the character and check if they are within the 
visibility-range of the agent and what objects they collide first with (using the collision 
detection algorithms of chapter 5). If any ray is within the visibility-range and hits the character 
first (and not a tree, a rock or some other occluding object), then the agent can see the character. 
A set of six rays might be a good compromise between “not exactly enough” and “too much 
computation”: one ray to each of the four limbs of the character, one to the head, and one 
somewhere to the center, around the stomach.

The introduced perception models are greatly simplified over the perception real humans or 
animals have. However it appears to be accurate enough for most 3D-action-games at the 
current time. In Halo (2003), for example, the hearing capabilities are using similar mechanisms 
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as described above, and for gameplay's sake an additional portion of unrealism is intentionally 
included: the agents can only see the player if the player can see the agent [4].
101 Dalmartians uses the simple hearing model (notice = ((loudness / distance²) > threshold)). 
To decide if an agent can see the character, the ray-casting technique described above is used, 
however with one serious problem that could not be resolved within the project time: only 
objects modeled as OBBs for collision detection can occlude the vision to the character, 
however not the ground generated by the heightmaps.

7.2. Decision making

Decision making is the core element of artificial intelligence. Many models are developed so 
that agents can decide, based on the percepts, knowledge, memories and experiences, what to do 
next. The approach used in games is different from normal behavior modeling: while the goal in 
behavior modeling usually is to create a decision making process that comes as close to the way 
humans think as possible, the goal for games is to make the agents “appear to be intelligent, 
rather than actually intelligent” [4]. The predominant decision making model are therefore finite 
state machines.

In a finite state machine, the agent is always in exactly one of a fixed set of states (like 
Attacking, Idle, Eating, Die). From each state, transitions to other states are possible, once a 
given precondition is fulfilled. The two common ways to describe these states and transitions 
are state diagrams and state transition tables [10].
As a result of this very simple model, the agents are solely reactive and not planning their future 
actions in advance. The big advantage of finite state machines is that they are very easy to 
design, implement, and that flaws and errors can easily be located.
Several improvements have been made to the simple finite state machines to improve the 
flexibility of agents while keeping the simple concept. In Fuzzy State Machines, for example, 
the agent can have several states at the same time, each of them to a certain degree. The model 
used in 101 Dalmartians to enable complex behaviors like “Look for food” is the Hierarchical 
Finite State Machine. In that one, each top-level-state can be divided into several sub-states, 
recursively. So every state can be another Finite State Machine. For example, Pongo's 
“Providing Alpha-Female with food”-state consists of five sub-states: Init, Searching for food, 
Collect food, Return to the nest, Give food to alpha-female. Once Pongo is in this top-level-
state, that does not mean all sub-states will be reached. If Pongo is already at the food to begin 
with, the “Going to food” will be skipped. More importantly, he can leave the “Providing 
food”-state before reaching the final sub-state, for example if he sees the main character (new 
state: Attack) or is getting too hungry himself (new state: Looking for food). Some states cannot 
be interrupted like this: if the spawns are in the state “evolving”, they are in their egg and will 
remain there even if the character attacks.

Theoretically, a hierarchical finite state machine can be seen as a plain finite state machine. In 
that case, every transition that leads to the top-state will be directed to the “Init”-sub-state, and 
every transition that is going away from the top-state has to be added to every single sub-state. 
However this leads to very complex models, so the modularization by using a hierarchical finite 
state machine is preferable. 
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Some games have been created that are using more sophisticated models. For example, the 3D-
shooter “No One Lives Forever 2” (2002) uses a simple goal-directed system [4], the agents of 
the racing game “Colin McRae Rally 2” are using neuronal networks to drive the cars well on 
different surfaces [5] and the famous “Creatures”-games are based on neuronal networks and 
genetic algorithms. However, especially in 3D-shooting games, the most wide-spread model is 
still the “Finite State Machine” and models derived from it, used in popular games like Quake, 
Unreal and Half-Life [2].

7.3. Steering

When agents want to go to another place in the level, they will usually not have to plan the 
whole way for themselves but can rely on structures provided by waymarkers. The path that 
result from the path finding algorithms introduced in chapter 6 will help them to avoid big static 
objects that were taken into account when designing the waymarker structures. However, 
collisions might still occur with dynamic objects (like other agents or the main character) and 
small static objects. So the agents need a way to avoid objects locally.

A common technique that works well in most cases (however does not scale very well) is to use 
repulsion forces that are emitted axially from every object. First of all, the vector of the 
direction the agents wants to go is calculated. Then, the repulsion force vectors from nearby 
objects are added up. The closer the objects are to each other, the stronger the repulsion force. 
So if two agents are going in opposite directions and are about to slightly touch each other, the 
repulsion force will make them avoid each other, resulting in smooth turns to the side. The 
repulsion force has to be optional, though, as there are cases in which collision between the 
agents and other objects are desired (for example when a creature wants to ram or peck Cruella, 
or Pongo and Perdita are mating).
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The repulsion force works if the agents are not going 
along the exactly same line. If that is the case, the 
repulsion force is exactly opposite to the desired walking 
direction and thus does not make them step aside. 
Unfortunately this happens frequently, as the agents will 
follow the paths given by the waymarkers most of the 
time. So this case needs a special treatment. In “101 
Dalmartians”, the following workaround is used: if two 
agents are getting close to each other and the resulting 
vector and the vector of the originally intended 
movement make up an angle less than 10°, then another 
vector pointing to the left of the agent is added to it. By 
this, they will avoid each other by going to the left side 
from their own perspective (the decision to go to the left 
side was made according to the left-hand traffic system 
in Singapore). As a last resort, if this does not help either 
(which can happen if more than only two objects are 
involved), the agents just turn around if they notice they will not get any further for a while and 
go back to the last waymarker.

This system works sufficiently well in most cases if there are not too many agents running 
around and there are not many narrow passages. However, if many objects are involved, then 
this systems tends to break down. The simple approach is to try to avoid these situations, by 
making the agents choose paths that are not used by other agents. This could be done in the path 
finding algorithm, by including it in the cost function (if the paths are computed during 
runtime). But then again, this might not be the desired behavior, if the agents are supposed to 
stick together in order to be stronger in combat as a group.

To solve this problem, real local planning is needed, which leads to very complex search 
algorithms which would be too complex for the scope of this work.

7.4. Memory

In most action-games, the enemies will not need much own memory, if any at all. In a typical 
3D-shooter, there are two things an agent might want to remember: the position it saw the 
character the last time, and the location of power-ups (food, in the case of 101 Dalmartians).
Implementing the memory is straight-forward – a simple array is usually enough. The one thing 
that needs to be taken care of is the fact, that the reality of the level might have changed in 
comparison to the memories an agent has. The character might have went to another place, and 
the power-ups the agent saw might have been used by the character or another agent. In 101 
Dalmartians, the food can change the location – the character can kick it to another place. So the 
object still exists, but the new position of the object does not match the memories of the agents 
anymore.
It is questionable if this kind of realism really increases the fun of the game. During the design 
of Halo, the creators noticed that some intentionally added realism was interpreted as a bug in 
the AI by beta-testers. For example, after seeing the character, the agents needed a short time to 
recognize that the character is the enemy and not a friendly unit. While this is realistic, many 
players complained about this “bug” during beta-tests [3]. In the same way, if a player sees that 
an agent wants to fetch a power-up at a place where there is none, this might be interpreted as a 
bug. For 101 Dalmartians, where a big emphasis was put on creating realistic agents in the 
project requirements, it was decided to include this source of realistic mistakes.
Once the agent sees a fruit, a structure we named “ghost” is created in the memory of the agent. 
It contains the position and the collision properties of the original object. For subsequent 
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each other and are about to collide. The 
repulsion force makes each one go to its own 
left and therefore avoid the collision.
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visibility checks, it will not only be checked what fruits the agent actually can see, but also 
which fruits the agent could see according to the ghost-information in the memory. If it could 
see a fruit at a specific position but there is none, then the ghost is deleted from the memory. 
This way, even if the agent has obsolete information about food, it does not have to go all the 
way to the old position. Once it sees there is not fruit anymore, it will look for another one.

7.5. On- and Off-Screen behavior

Many parts of the agent's behavior is very computation intensive. For each rendered frame, the 
collision tests, steering, visibility checks and so on have to be performed, which might slow 
down the game too much if the level is big and many agents are wandering around.
One common way to solve this problem is to use different behavior-routines – one computation-
intensive routine that does all these checks, and one routine that does as little computation as 
possible. The latter one is used if the agent is far off-screen. So while this results in much less 
realistic behavior of the agent, the player will hardly notice that as he cannot see the agent at 
that time.
Many simplifications for off-screen behavior are feasible:

• The visibility checks can be done much simpler. Instead of casting rays from the agents 
to the objects and checking if they collide with an occluder first, all objects within the 
view cone of the agent and a certain distance are seen. Or to make it even simpler, all 
objects within a certain distance can be seen, saving the check of the field of view.

• No collision tests need to be done when the agent is following the predefined paths. 
When two agents meet each other along the way, they can just walk through each other. 
And no big static objects are on the predefined paths anyway.

• Updating the animation while walking can be omitted. If the rendering engine does a 
good job, the rendering information will not be sent to the graphics card, otherwise it 
should be manually set as invisible.

• An even more aggressive approach is not to move the agents the normal way at all but 
to “warp” them from one waymarker to another. When the agent is at one waymarker, 
the distance and walking time to the next waymarker it wants to go to is estimated. A 
counter is set to the walking time, and once the counter is down to zero, the agent is 
warped to the target. This way, all the calculation how far an agent can walk from one 
frame to the next one is saved.

The big disadvantage of this method is that the transitions between the two behavioral routines 
(especially from off- to on-screen) is highly complex. While collisions are simply ignored in the 
off-screen mode, the on-screen-mode must be collision-free. So on the transition from off- to 
on-screen-mode, the position of the agents might need to be interpolated (when using “warping” 
for walking), and relocated to avoid collision.
As the transition is also computation intensive, it should be tried to have as little transitions as 
possible – better let the agents be a bit longer on-screen than to let them be off-screen as soon as 
possible only to switch back few frames later. The simplest way is to delay the transition to off-
screen a bit. Once the agent is far enough for some seconds already, it is less likely that it will 
be on-screen soon again.

In 101 Dalmartians, the mentioned methods of off-screen-behavior were implemented, but not 
used in the final version as the transition from off- to on-screen could not be implemented fully 
consistently in time.
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8. Implementation

8.1. Toolkits and SDKs

The core engine used for “101 Dalmartians” is OGRE, an open-source (GNU Lesser General 
Public License) 3D graphics engine. It is written in C++, however a wrapper for Java [link 7] 
and a port to C# [link 8] also exists. It is important to point out that Ogre is not a game engine, 
so it does not deliver functions for building artificial intelligence, game physics, sound, and only 
rudimentary functions for handling user input and collision detection.
Ogre uses a scene-based approach, in which a tree-shaped scene-graph is constructed and 
objects like the logical camera or rendering objects are attached to SceneNodes.
One of the most important features of Ogre is to provide an abstract class “RenderSystem”, 
which is implemented for different kinds of low-level rendering systems. Implementations for 
OpenGL and DirectX are provided, so it is rather simple to write programs that can be compiled 
for Windows, Linux and Mac OSX.
ResourceManager objects ease the management of graphic objects, especially textures and 
meshes. These objects are referenced by name rather than by the filename – a configuration file 
usually called “resources.cfg” provides the mapping between these logical names and the 
physical location of the files on the disc. Therefore, the program does not have to be recompiled 
when a filename changes.
The most important object in Ogre is the “SceneManager”, again an abstract class with different 
implementations. It manages all the SceneNodes, cameras, lights and materials and does most of 
the communication with the RenderSystem. Some of the implementation can use heuristics to 
find objects that are not on the screen. These objects are not sent to the rendering system, which 
greatly improves the performance of the game. For example, big in-door levels can benefit from 
the “BspSceneManager” that uses a BSP-tree to organize the static world. “101 Dalmartians” 
uses the “TerrainSceneManager”, that provides functions to generate the ground of the level 
from bitmap heightmaps.
The scene itself is managed in a tree-structure consisting of an arbitrary number of 
“SceneNodes”. The first node is called “RootSceneNode”. Every node can have several child-
nodes. All objects to be rendered, like the meshes, the light sources, but also the camera, are 
attached to a SceneNode. The big advantage of this system comes with the fact that the position 
and orientation of each node is stored relatively to its parent node. So it is possible to move 
several objects that belong together by change the position of only one SceneNode.
Once the “startRendering”-function of the Root-object is called, Ogre starts the rendering and 
takes over the command over the program. It will try to render as many frames as possible with 
no delay between the frames (which is usually the way to go in games). The game loop, the core 
function of the game, is an implementation of the “frameStarted”-function of the 
“FrameListener”, which is called every frame. The game loops gets the information how much 
time has passed since its last call, it can query the status of the keyboard and the mouse and 
update the SceneManager. Once the “frameStarted”-function returns a “false” value, Ogre ends 
the game.

To include sound effects and a background music to the game, the “Fmod EX” [link: 9] audio 
library is used. Fmod EX is a very powerful cross-platform, multi-format engine that has a 3D- 
and a 2D-mode. In 3D-mode, many sound sources (like creatures) and one listener (the main 
character) can be defined, including their position and velocity. Several 3D-effects can be 
achieved (like doppler shifts when the sound source or the listener is moving). “101 
Dalmartians” uses the the 2D-mode, where sounds are simply played without any further 
information about the source's position. Only the background music and one sound is played at 
the same time in this game.
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8.2. Tools for creating the level

The structure of the level is not hard-coded, but given by a set of input files. The core input files 
are:

• Terrain.cfg   is loaded by the TerrainSceneManager. It provides the heightmap and the 
textures for the ground.

• Level1.cfg   provides the locations of static objects (rocks, trees, archs), food, the initial 
creature population and the main character in the level.

• Regions.txt   defines the rectangular areas the level is divided up into, the waymarkers 
and boundary points, and the connections between the waymarkers.

• Interregion.txt   and Intraregion.t  xt   are the precomputed cache-files used for path 
planning.

Except for Terrain.cfg, all files are created by tools that were written specifically for this game. 
The most essential tool is the in-game level designer. It is called by pressing “F12” in the 
“cheat”-mode (triggered by the enter/return-key). From a bird-perspective, the static objects, 
creatures, food and waymarkers (represented by a cross) can be placed. A special mode exists 
for creating the connections between waymarkers (represented by white lines between the 
waymarkers). The rectangular regions and the initial position of the character has to be entered 
manually into the files, as it would have been more effort to create tools for doing this.
If the setup of the waymarkers and their connections has been altered, then another tool has to 
be called - “connection.exe” creates interregion.txt and interregion.txt using the algorithms 
described in chapter 6.2.
Another tool was written to create the OBBs assigned to each object. The “OBB designer” 
allows to create a box in the game and modify it along the 4 degrees of freedom (x/y/z-axis and 
y-rotation; see chapter 5.4). So, one box after another, a bounding volume structure for an object 
is created which will be used for the collision detection. Due to the time constraints on the 
project, this designer had to be done “quick & dirty” - and indeed it is dirty. The mesh that the 
OBBs are created for is hard-coded, so after creating all the OBBs, the program has to be 
modified and recompiled to select a new mesh. The resulting OBBs are hard-coded into the 
program, too. For bigger projects with many different kind of meshes, this would be unpractical, 
but in “101 Dalmartians”, only around a dozen meshes are used and around 50 OBBs had to be 
created, so it was the fastest way to do it like this.

8.3. Class Structures

In the given UML-diagram (fig. 8.1) of the main classes used in the code, the program is 
divided into three parts: At the left are the “Ogre Standard classes”, which are provided by the 
Ogre API. No modifications were made to these classes, except for inheritance. The middle part 
is the “game loop” part, where the character-control, the creature's actions and mostly 
everything else dealing with the actual game playing happens. In the “abstract world”, there are 
classes for collision detection, path finding and knowledge representation. The separation 
between the “game loop” and the “abstract world” part may be a bit artificial, however it makes 
clear that from a conceptional point of view, the game physics and the rendering are two 
completely different tasks that do not influence each other.
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A brief description of the main classes:
• DalmApplication is the “root class” of the whole program. It is called by the operating 

system, does all the initialization of the main underlying classes, and finally calls the 
startRendering()-Function of Ogre's Root class. After this point, DalmApplication will 
be passive until the game ends.

• DalmFrameListener contains the main Game Loop. It handles the different game modes 
– like the playing mode, the help screen, the designer tools, and so on. In the playing 
mode, its main functions are to call the input handler DalmKeyListener and the game 
loop of the CreatureManager.

• CreatureManager actually does much more than its name sounds like. It handles not 
only the creatures, but also the character, the food, and the projectiles. In addition to 
that, it keeps record about the static object in the world. It owns the “MapManager”, 
which divides the level into logical areas, keeps track about which objects are in which 
area and manages the waymarkers and path finding. The collision detection routines 
rely on the information provided by these two objects.

• The Player-object is connected to two other objects besides the CreatureManager: first, 
it receives commands from the DalmKeyListener, like “shoot”, “turn to the left” and so 
on. Secondly, it is connected to the PlayerCamera. In normal game mode, the Camera's 
position mainly depends on the character's coordinates and orientation, however in 
some special modes (for example in the designer mode) it can be detached from the 
Player-object and be controlled by the DalmKeyListener directly. If the character 
shoots, the information about the creature aimed at is provided by the PlayerCamera to 
the Player-object. This may sound strange at first, but comes from the gameplay design: 
The player aims using the crosshair that is fixed at the monitor's center. The camera's 
position depends on the character's position, but to avoid collision and in order to look 
up and down, it is flexible to a certain amount. Thus the Player-object does not know by 
itself where the camera exactly is.

• DynamicElement and GameElement are nearly identical. GameElement is every object 
in the level that has a shape and position. DynamicElement is a GameElement that 
physically exists in the game world and therefore has a mesh attached. All the actors in 
the game are DymanicElements as they exist in the physical (rendered) world and in the 
abstract world.
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• The Creature-objects, including the Spawns, Pongo and Perdita, are basically one big 
game loop controlling the state machine. As complex as the state machine is, the 
underlying design quite simple. Every Creature-object has one attached 
WorldKnowledge-object, that is basically a container for various information the 
creature knows about the world. The WorldKnowledge can contain GameElements that 
represent the shape and position of the objects the creature remembers (the “ghost” 
mentioned in chapter 7.4). This structure has the advantage that the same functions used 
to check if a creature can see a real object can be used to check if the creature could see 
an object if it still was at the same position as before. If it cannot see it for real, then the 
creature can reason that the object has moved or vanished and update its memory 
accordingly.

At this point, it should be mentioned once more, that all of the game design had to be done on-
the-fly under heavy time constraints, while being somewhat unexperienced in game design at 
the beginning. The presented class diagram is therefore a highly idealized version of the real 
source code, and even so, some weaknesses of the game design are apparent (the naming of the 
GameElements and DynamicElements is highly counter-intuitive, for example).
One more thing to point out is that some core objects like the SceneManager, CreatureManager, 
MapManager and StaticWorld are basically globally visible. As nearly every other object needs 
functions provided by them, nearly every object has a reference to them. This is implemented by 
passing the references when constructing the objects. A more elegant way would have been to 
use the “Singleton”-construct of Ogre that makes objects that are instantiated only once globally 
available.
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9. Discussion
To conclude this work, some experiences made during the project and the current state of the 
game will be presented.

9.1. Lessons leaned

If the goal of the project had only been “design a good game”, then the biggest mistake would 
have been not to use a real game engine. Of course, given the academical background of the 
project, using an existing game engine was out of question. However, one of the most important 
points learned was to appreciate the work of game engines. While the core concepts of the game 
physics seem to be easy to understand, a nearly endless amount of issues arise to make things 
work smoothly. Even an apparently easy task like making an agent walk from one point to 
another one can be quite bothersome, finding a good route to that point using waymarkers, over 
avoiding the collisions with other agents, to handling the correct walking speed once a slope is 
involved. And all of this has to work before one can event start to think about higher-level 
artificial intelligence. So if having a working game had been the main intention of the project, 
using an existing game engine instead of writing a new one from scratch would have been the 
better decision – but even then, the three months of time probably would not have been enough 
to implement all the ideas of the initial concept. Creating a 3D-game just takes time.

Putting the game physics part aside, it has to be pointed out that the workload and importance of 
the graphics cannot be overestimated, even for a rather small project like “101 Dalmartians”. 
While this document is mainly about the underlying algorithms, the graphics and animations 
still was one of the most time-consumptive tasks of the project. For every team of coders trying 
to create a game, it will be crucial point to find enough people good with graphics. 
Luckily, both Gilles and Cedrik were quite talented with graphics, so even when the game was 
made only by computer science students without the help of any “professional” designers, the 
game looks quite decent given the circumstances.
Of course, the graphical quality cannot match the quality of commercial games. However, 
watching the reactions of “normal people” who are not involved with any kind of software 
developing on the game, it seems that this “fan factor” does not influence the expectations on a 
game very much - a game will be compared to commercially available games, no matter the 
difference in developing time, experience and budget.

An interesting “mistake” that some people pointed out was the problem to identify with the 
main character of the game. The problem they had was the fact that you see Cruella only from 
the back – so in the end, some people did not even find out if she was male or female. For 3rd-
person-games, it seems to be important to see the main character from the front side from time 
to time.
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9.2. Current state of the game

Currently, the state of the game could be described by “playable”. It worked well on the lecture-
internal demonstration at the end of the project. It did have some compatibility-related issues – 
some of them have been removed after the project was over, some of them have not. The game 
worked at approximately two third of all tested systems.

The game is quite enjoyable for a while – it has sweet graphics, funny sounds, and a game 
element not to be underestimated: the “kick”. Basically, the kick serves no real purpose, which 
was why I myself objected to spending a lot of time into coding it at first. Most of the kick was 
therefore coded by Gilles, whose idea the kick was to begin with. In the end, he was right: 
watching other people playing the game, we realized, that most of them found the kick to be the 
most entertaining part of the game, running around in the world, trying to kick everything from 
creatures (possible), fruits (possible) to 20m-high rocks (not possible). For a game, it seems to 
be vital to have an “unique sales factor” like this in order to be really entertaining. Lesson 
learned.

Once one has a closer look at the game, a lot of rough edges can be found. Some of the most 
annoying bugs are:

• A nasty graphical bug appears once 
shadows are activated. The cause was not 
found yet, it is probably something 
between Maya and Ogre. As several 
bugfix releases of Ogre were released in 
the meantime and none of them 
mentioned this problem, it is probably 
some faulty settings at the exporter-
plugin for Maya.

• The steering of the creatures is far from 
perfect, resulting in creatures colliding 
with each others from time to time or 
even get stuck completely.

• Sometimes the creatures have problems 
walking up or down the slope, making 
them walk backwards – a strange effect we dubbed “the moonwalk” that we could not 
completely resolve yet.

• Some collisions are not very accurate yet – especially the nest of Perdita. The character 
sometimes can walk completely into the rocks. The problem does not lie in the 
algorithms used – the problem was just that the time was not enough to define all the 
OBBs accurately. As the nest is the most complex object in the game and only appears 
at the end of the game, where the player is probably busy having his showdown with the 
alpha male and female, not much time was spent into the nest.

• Many other details – most of them were mentioned earlier in this document.

However, there is no real work going on at the project anymore. After the project, few of the 
most annoying bugs and mistakes were resolved, but there is no intention to commercially 
release this game. For that reason, it was decided to release the code under some Open Source 
licence, downloadable at [18].
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